
JOURNAL OF 

GEOMETRY AND 
PHYSICS 

ELSEWIER Journal of Geometry and Physics 20 (1996) 273-296 

Mirror symmetry of elliptic curves and Ising model 

Shi-shyr Roan ’ 
Institute of Mathematics, Academia Sinica Taipei, Taiwan 

Received 2 August 1995; revised 2 I November 1995 

Abstract 

We study the differential equations governing mirror symmetry of elliptic curves, and obtain a 
characterization of the ODES which give rise to the integral q-expansion of mirror maps. Through 
theta function representation of the defining equation, we express the mirror correspondence in 
terms of theta constants. By investigating the elliptic curves in X9-family, the identification of the 
Landau-Ginzburg potential with the spectral curve of Ising model is obtained. Through the Jacobi 
elliptic function parametrization of Boltzmann weights in the statistical model, an exact Jacobi 
form-like formula of mirror map is described. 

Subj. Class.: Quantum field theory 
1991 /WC: 14H52, 14K25 
PACS: 05.50 
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1. Introduction 

Recent progress in physicists’ construction [6,17] of the “number” of rational curves 
of arbitrary degree on a large class of Calabi-Yau spaces has stimulated efforts to find a 
mathematical understanding of this remarkable “counting” principle. As is known the main 
ingredient of practically all examples is to express the “counting” ‘function, called the mirror 
map, in terms of solutions of a generalized hypergeometric system. As a physical theory, it 
is the N = 2 supersymmetry (SUSY) two-dimensional Landau-Ginzburg (LG) models to 
describe the mirror symmetry of a-models on KIhler manifolds with vanishing first Chem 
class (for the basic notion of mirror symmetry, we refer readers to [ 171). This novel principle 
gives also counting functions on other cl = 0 algebraic manifolds of an arbitrary (complex) 
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Table 1 
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Constraint Differential operator 1728J(z) 

P8 x~+x:+x: -z-~‘~xIx~x~ =OinP~,,,,,, o* - 3z(30 + 2)(30 + 1) (1 + 216~)~/z(1 - 27~)~ 

o2 - 4z(40 + 3)(40 + 1) (1 + 192~)~/z(l - 64~)~ 

Jlo .+ + ~2” + xi - z-‘/~xIx~x~ = Oin [IDo,,,, o2 - 12z(60 + 5)(6@ + 1) l/z(l - 4322) 

dimension. In the elliptic curve case, there are three ways of realizing them as hypersurfaces 
in weighted projective 2-space, and the moduli parameter is always connected to the classical 
J-function by an algebraic relation [8,9] presented in Table 1. Here the differential operator 
describes the Picard-Fuchs equation for the family, and 0 := z(i3/az). With the variable 
t obtained by a ratio of fundamental solutions of the differential equation near z = 0, the 
mirror map yields the following numerical expansion of q (:= e2=‘* ) for the parameter z: 

Ps: z(q)=q-15q2+171q3-1679q4+15054q5-126981q6+..., 

X9: z(q) = q - 40q2 + 1324q3 - 39 872q4 + 1 136 334q5 

-31239904q6+..., (1) 

~~~~ z(q)=q-312q2+87O84q3-23O67968q4+593O898126q5+.... 

Note that the “counting” numbers in these expansions are all integers. For a general Calabi- 
Yau hypersurface family in a weighted projective space, one also produces a “counting” 
function of such kind. However the mathematical reason for the arithmetical nature of 
“counting” functions is poorly understood, but a fundamental understanding of this counting 
principle should be important to further mathematical development of mirror symmetry. 
In [8], the generalized Schwarzian equations were derived for mirror maps of one-modulus 
cases as one effort towards this direction. The starting point of the present work is to clarify 
the role of differential equations in the integral property of counting function z(q). We 
find a characterization of the equations appeared in Table 1 by their qualitative relations 
with J-function. For the precise statement of the result, see Theorem 1. On the other 
hand, the numerical evidence has also suggested z(q) might possess a certain structure 
like modular functions. To the author’s knowledge, not much is known about the exact 
modular form-like expression of z(q), even on elliptic curve cases. In this paper, we have 
obtained the elliptic theta function parametrization of constraints, i.e. LG superpotentials, 
in Table 1, and also the exact formula of z(q) in terms of theta constants. The key ingredient 
is the observation of the connection between discrete symmetries encoded in constraints 
and their hidden theta function (projective) representations. Our purpose here is to analyse 
extensively the discrete symmetries appeared in Table 1 and to determine the theta function 
parametrization of the superpotential for each case, which allows one to obtain the exact 
formula of the moduli parameter. One main contribution of the present work is that we have 
connected X9-family with Ising model, a standard physical theory which has been served 
as a basis to provide a simple two-dimensional statistical model. Here the Jacobi elliptic 
parametrization of Boltzmann weights in Ising model is used for the derivation of theta 
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function representation of the X9-potential, and the Jacobi form expression of temperature- 
like parameter of Ising family leads to a closed form of z(q) for X9 in (1) in terms of theta 
constants. With this novel phenomena, it becomes increasingly interesting in the interplay 
of geometry of ct = 0 Kahler manifolds with other two-dimensional solvable statistical 
models. As is well known, theta function parametrizations have provided a powerful tool 
in two-dimensional lattice models to obtain quantities of physical interest [3,15]. In recent 
years, there has been considerable progress in the study of chiral Potts N-state models [ 1.51 
as a generalization of Ising model. The Boltzmann weights of the chiral Potts models lie 
on hyperelliptic curves with a large number of discrete symmetries, and their theta function 
parametrizations are known [4,13]. The question that we address for future investigation is 
to establish a connection between this hyperelliptic function parametrization with mirror 
maps of Calabi-Yau spaces. A resolution might point towards some future structure, yet to 
be explained. 

The following is a summary of the contents of this article: In Section 2, we recall some 
basic facts on elliptic theta functions and Heisenberg group representation which will be 
needed for the discussion of this paper. In Section 3, we study the Schwarzian equations 
satisfied by mirror maps, which are derived from a special type of Fuchsian differential 
equations [8, IO]. We characterize the differential operators in Table 1, which are solely 
governed by the integral property of the q-expansion of the Schwarz triangle function and its 
qualitative relation with J-function. Also we indicate the Jto-family as an equivalent version 
of Weierstrass form of elliptic curves. In Section 4, the elliptic theta function parametrization 
of &-family is derived, so is the expression of z(q) in terms of theta constants. Based 
on the identification of symmetries of the defining equation with the finite Heisenberg 
group of degree 3, the standard theta function representation of the group gives rise to 
the parametrization of &-potential. In Section 5, we give a brief review on elliptic curve 
theory related to Boltzmann weights of Ising model, which will be relevant to our discussion. 
Primary focus is on its Jacobi elliptic function parametrization. With this parametrization, by 
examining the relation between X9-potential and Ising model, we derive the Jacobi elliptic 
function representation of elliptic X9-family in Section 6, and also the exact formula for 
the moduli parameter z(q). After carrying out the mathematical results of this paper, finally 
in Section 7 we will mention a comparison of some essential structures of two physical 
theories: N = 2 SUSY LG theory and exactly solvable statistical model, whose geometry is 
presented in Calabi-Yau spaces and hyperelliptic curves of chiral Potts models, respectively. 

In this paper, we use the following notations: W = {t E C I Im(t) > 0) the complex 
upper-half plane, E,,b is the one-dimensional torus C/(&Z + Zb) for two R-independent 
complex numbers a, b, and E,,b(d) the d-torsion of [E& for a positive integer d. 

2. Preliminary 

Here we recall the definitions of Heisenberg group and theta functions, and list some of 
their basic properties that will be used in the context of this paper. For the details, we refer 
the readers to some standard text books on theta functions, e.g. [ 111. 
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Definition 1. 
(i) G = CT x Rx R (CT = {a E C* 1 [a( = 1)): the (three-dimensional) Heisenberg group 

with the group law, (a, 6, ,u) . (a’, S’, p’) = (tm’e2xi@‘, 6 +a’, p +p’). A@, q) is the 
subgroup of G generated by (1, p, 0) and ( 1 , 0, q) for non-zero rational numbers p, q. 

(ii) Gd = Vd x & x & (Vd = ((;II E c* ) ad = 1)): the finite Heisenberg group of degree -- -- 
d with the group law, (CX, 3, CL) . (a’, a’, p’) = (aa’e2”i~S’/d, 6 + S’, ,LL + p’). 

(iii) 6;d = Gd .E2: the extended degree d Heisenberg group which is the semidirect product 
of Gd and & with Gd normal in &, where the conjugate action on Gd by the non-trivial 
element of Z2 is the map, (CX, S, p) k+ ((w, -3, -jZ) for (a, S, Ji) E Gd. 

(iv) The canonical representation of ‘i& is the d-dimensional irreducible representation of 
6d where group elements act on a basis (ek)fzi of the vector space by 

((a, 0, 0) x Okk = aek, ((1, 0, 0) X i)ek = e&k (ed := eo), 

- 
((1, 0, i) X O)ek = e2nik’dek. 

(2) 
((1, 1, 0) X O)ek = ek+l, 

It is easy to see that the following groups are isomorphic: 

A(lld, l)/A(l, 4 2: Gd, 

(1, l/d, 0) + A(l, d) w (1, i, 0), 

(l,O,l)+A(l,d)w (l,O,i). 

(3) 

For 6, p E R, t E W and an entire function f on C, one defines the functions SFf and 

Ts(r)f by 

(W)(z) = f(z + CL), (Ts(r)f)(z) = qs2e2niszf(z + Sr) for z E @. 

Then S, and Ta (= TJ (5)) act on the space of entire functions with the relations 

s,s,t = S/l+ILfr Ts% = Ts+s,, S,Ta = e 277iw6 Ts SW (4) 

and they generate a representation of the Heisenberg group G by (CX, 6, p) f := (;Y Ts (s) S, f 
for (cr, 6, P) E G and f an entire function. For t E O-U, the theta function t’?(z, t) of lE,,l 
and the theta function 9[ L] (z, t) with characteristics 6, ,LL E 02 are defined by 

6(z) (= O(Z, T)) := c(Tn l)(z) = E qm2e2nimz , 
mez RI=-CC 

S,T,S(z) = qs2e2nis(z+~) B(z+6t+pL), ZEC, 

where 1 is the constant function with value one and q := eniT. (Note that the variable q in 
Section 1 is related to q by q = q2.) Then S(z, t) is the unique entire function invariant 
under A( 1, l), and we have 

(5) 
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The theta function has the representation of infinite product: 

0 
I9(z, 5) = 79 

[1 
o (z, r) = fi(l + 2q2”-’ cos 2lrz + q4”-2)( 1 - $“) , 

n=l 

and the following quasi-periodicity and zero relation hold for i? [ ,“I ] : 

l9 

l9 (z, r) = 0 u z = (i - S)r + (i - ,u) (modZr + Z). 

(6) 

We have 

* S’fS 
[ I 

p, + ~ (z, r> = qs2e2nis(z+~+@‘)0 
[ ‘I 

, tz + as + p, rj, 

,[s:‘](zlr)=~[~](z,r~, ~,~~~](z,r~=e2~i~~,~](z,r~. (7) 

Hence 

s 
79 

[I 
~ (-Z,r)= I9 '--," (Z,r)= e-2nisfl lb' 

[ I [ I 
1 _ ~ (2. r), 

1-S 
l9 

[ I 
1 _ cL (i(r + l), r) = -e2Kipz9 ’ 

[I 
~ (i(r + l), r). 

0-9 

The infinite product representation of theta functions with half-integer characteristics are 
given by: 

112 !x 
81(z, r) := 7.9 1,2 

[ I 
(z, r) = Qo4 If4 sinnz I-I (1 -2q*"cos2nz+q4"). 

n=l 

&(z, r) := 0 112 
[ I 

o (z,r) = 2q0q'/4cosIrz f’i(l + 2q2ncos2xz +q4"), 
n=l 

[I 
= qo fi(1 +2q'"-' 

(9 
0 

&(z. r) := ~9 o (z,r) cos 27rz+ q‘+2), 
n=l 

0 
84(z, r) := 17 1,2 

[ I 
(z, r) = qo fi(1 - 2q2"-' cos 27rz+ q4"-'), 

n=l 

where qo := nr=, (1 - q*"). The odd function 61 and even functions 292, 83, 194 of variable 
z (for the same modular r) satisfy the square relations: 
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a~(z>&o) = 0,2(z)l9,2(0) - lY,2(z)lq(O), 
?Y;(z>?9~(0> = ?Y~(z)S,2(0) - 7g(z)z&O), 
79,2(z)79,2(0) = l9;(z)s,2(0) - ~;(z)Bf(O), 

s:(z)s,2(0) = ?9,2(z>a,2(0) - 29~(z)l9~(0), 
(10) 

hence the identity of their zero argument: 

z$(O, t) + zg(O, s) = ?g(O, t). (11) 

For a positive integer d, let Thd(t) be the space of A(l, d)-invariant theta functions with 
characteristics. Then Thd (t) is a d-dimensional vector space with a basis 

6 kid 
[ 1 0 

, Oskld-1. 

By (5) and (7) one has the relations: 

By (2), (3) and (8)) the action of Tijd. S) on Thd(t), together with the involution 

gives rise to the canonical representation of the extended degree d Heisenberg group 6, 
via the identification ek = z9 [ “id]. 

3. ODES for mirror maps of elliptic curves 

In this section, we shall characterize the differential operators in Table 1 through J- 
function with an emphasis on integral q-expansion property of the variable z . It is known 
that an elliptic curve can be represented in the Weierstrass form: 

y2 = 4X3 - g2.X - g3, (x9 Y) E C2, (12) 

with the parameter [g2,g31 E Pl,,,,, equivalently the variable J (:= gz/(g,’ - 27gi) E 
@ U (cm]). The periods of elliptic curves satisfy the Picard-Fuchs equation: 

2 
1 dY g+-- 

315-4 
JJdJ+ 144J2(1 - J)2y = ” 

A ratio of two periods gives the variable r of W, which, as a function of J, satisfies the 
Schwarzian equation: 

{r,J)== 3 
4 23 

8(1 - J)2 + 3 + 72J(l - J)’ 
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here the Schwarzian derivative is defined by (y, x} = y”‘/y’ - i(~“/y’)~. The inverse 
function J(r) of t(J) is a modular function [7,14] with g2 (t ), g3 (t ) expressed by Eisenstein 
series. Hence 1728J(r) admits an integral q-series: 

17285(r) = q-’ +744+ 196884q+21493760q2 +..., q = e2nir, 

In this section, we shall discuss the integral property of the q-series in (1) and the relation 
between J and z in Table 1. We state the following simple lemma for later use. 

Lemma 1. Letw(z) = ~+~~~~a,,,z”‘andz(q) = q+CEZ2kmqm hetwoformalpower 
series with a,,, E i2 for all m > 2. Then w(z(q)) has an integral q-expansion ifand only {f 
all the k, ‘s are integers. cl 

Consider the following ODES of Fuchsian type: 

(02-~z(0+(Y)(0+~))y(z)=o, p,a,BE~Po, o+B=l, w>B, 

(13) 

where 0 = z( d/ dz). Eq. (13) is invariant under the change of variables z H --i + 1 /p, 

and with three regular singular points z = 0, 1 /p, 00. By the change of variables, x = pz, 

( 13) becomes the hypergeometric equation: 

x(1 -x)$ + (1 - 2x$ 

whose fundamental solutions at x 
solution with logarithmic term: 

- apy = 0, (14) 

= 0 consist of a hypergeometric series and another 

Y2tx) =log(x)F(a, p; l;x)+ 2 a,x”. 

The local system for Eq. (14) is described by analytic continuations of yt (x) and Ye, or 
of another pair of fundamental solutions, ayl (x) + byz(x) and cyt (x) + dyz(x). The ratio 

t(x) = 
w(x) + by2(x) 
ayl(x) +by2(~)' 

is called a Schwarz (triangle) function, which satisfies the Schwarzian differential equation: 

(t, x) = 2Q(x) with Q(x) = 
1-4($x(1 -X) 

4x2(1 -x)2 . 
(15) 

All the Schwarz functions are equivalent under SLz(C)-action on the value t. Now the 
solutions of Eq. ( 13) are expressed by Riemann P-function 

Pi; ‘F; :z)=Af,(z)+Bf2(z), A,BEC, 
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fl (z) = Yl (PZ) = F(a, B; 1; PZ), 

f2Cz) = Y~(PZ> - log(p)yl (pz) = log(z)fi (z) + 2 dnz”. 
Il=l 

The ratio 

f2(4 
t(z) = ~ 

2nifi (z) 
(16) 

forms a uniformizing coordinate of the punctured disc at z = 0, which is characterized by 
the solution of the equation 

It, z) = 2P2Q(PZ) (17) 

with the conditions: 

lim t(z) = 00, 
2'0 

lim t(e”z) = t(z) + 1, lim !I = 1 (q := ezait). (18) 
8-+2nm z+o z 

We have a local isomorphism between the z and q-planes with the relation 

z=q+ck,,q”, k,, EC. 
n12 

(19) 

The characterization of the equations of type (13) with integral coefficients for its associated 
series (19), i.e. k,, E L for all n, will be our main concern in what follows. 

The analytical continuation of t(z) gives rise to a Riemann surface IH which spreads 
over the t-plane and infinitely covers z-plane outside (0, l/p, co). We have the following 
relations between Riemann surfaces: 

P’ - (0, l/p, 00) t4- 8 L t(S) c P’. 

One can extend M to a Riemann surface % over the oo-value of z with an extended diagram 

P1-(0,1/p}-Z~A4(%)cP’ 

such that near an element of z-’ (oo), the local description of the above diagram is equivalent 
to the following one: 

(ll/zl -=C 6’1 - Ilsl < El - 116 ==C 61, l/z=sG- s - Ls’, 

where k, 1 are two relatively prime positive integers with (Y - j3 = l/k (hence k 1 2), and 
i is a local coordinate of t-plane centered at t(oo>. Similarly the (multi-valued) function - 
t(J), J # 0, 1, defines a Riemann surface Y~J with its partial compactification %J: 

We introduce a notion relating t and r for our later use. 
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Definition 2. The Schwarz triangle function t(z) (16) for Eq. (13) is related to J-function 
if for some morphisms P and @, the following diagram commutes: 

Theorem 1. All the differential operators of type (13) with t(z) related to J-function and 
the integral q-series z(q) are those listed in Table 1. 

The rest of this section will be mainly devoted to the proof of Theorem 1. We shall 
regard a coordinate system of @ as the (affine) coordinate of the Riemann sphere P’ via the 
identification: P’ = C U (00). As before, by the change of variables x = pz, the morphism 
P in (20) induces a rational map 

l&@-P’, x t--+ J = l/J(x). 

By examining the behavior over critical values of the function J(t), the above morphism 
I/I satisfies the following conditions: 

(i) The critical values of $ are contained in (0, 1, co]. 
(ii) @-‘(cc) = (0, l}, and th e multiplicity of * at 0 is equal to 1, i.e. mult$ (0) = 1. 

(iii) The value I++(oo) is equal to 0 or 1. For x # cc and Q(x) = 0, 1, we have multe((x) = 
3,2 according to e(x) = 0 or 1, respectively. 

Lemma 2. There are exactly three solutions for the above function e(x): 

(1 + 8~)~ (1 + 3x)3 1 

64x(1 -x)~’ 27x( 1 - x)* ’ 4x(1 -x)’ 

ProofI Let d be the degree of the map I@. By the conditions on +, d is greater than or equal 
to 2. Further d = 2 if and only if {critical value of 1c/} = {0, I], in which case one has 
@(oo) = 0, then it is easy to see q(x) = 1/4x(1 - x). Now assume d 2 3. By Hurwitz 
Theorem, 2d - 2 = r-0 + r-1 + rm where rj is the sum of ramification indices of elements in 
$-’ (j). By (ii), roe = d - 2, hence d = ro + rl . Let k be the multiplicity of I/J at x = co. 
By (iii), 

d-k d 
(ro,rl)= 23+k-l, 2 

d d-k 
2?, 2+k-l 

> 

according to $(co) = 0 or 1, respectively. This implies either (d, k) = (4, l), e(x) = 
a(x + b)3/x(1 -x)~ or (d, k) = (3, l), 1+9(x) = (x + b)3/x(1 -x)* for some complex 
numbers a # 0, b # 0, - 1. Ford = 3, there is only one critical point not in (0, 1, co, -b), 
whichisgiven byx = b/(3b+2). We have +(b/(3b+2)) = 1, hence 27b3 +27b* -4 = 0 
which implies b = 4. Therefore @(x) = (1 + 3~)~/27x( 1 - x)*. For d = 4 , there are 
exactly two critical points XI, x2 not in (0, 1, 00, -b), and multe(xi) = 2, @(xi) = 1 for 
i = 1,2. By the expression of q(x), one can easily see that xi’s are the solutions of the 
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relation, x2 + (2 + 4b)x - b = 0, with the non-zero discriminant 4(4b + l)(b + 1). Then 
x1, x2 satisfy the following relations for x = xi, 

x+b= 
3x(1 -x) 

1-4x ’ 

27ax* 
+(x) = (1 _ 4x)3 = 

27a((-2 - 4b)x + b) 

(-108 - 256b - 64(2 + 4b)*)x + 1 + 48b + 64(2 + 4b)b’ 

Since @(xl) = $(x2) = 1 and XI # x2, this implies the vanishing of the determinant of 
coefficients in the above expression for $(x), hence (86 - 1)(4b + 1) = 0 and b = {. 

Therefore 9(x) = (1 + 8~)~/64x(l - x)~. 0 

Now we are in a position to prove Theorem 1. 

Proof of Theorem 1. By Lemma 2, the map p in (20) and the corresponding value of a! - /? 
are expressed by 

’ c (1 + 8~2)~ 1728 1 

z(1 - pz)3’ 
C=- 

64P ’ 
CY-/?=<, 

1728J = 17281&(z) = + cc1 + 3pz’3 
z(1 - PZ)2 ’ 

c = 1728 a - /j = A 
27~ ’ 2’ 

1 1728 2 
C 

\ z(l -PZ)’ 
C=---- 

4P ’ “-B=5. 

Since both 1728J and z have integral q-expansions by Lemma 1, C is equal to 1, hence p = 
27,64,432 according to a! - /3 = $, $, t, respectively. The corresponding operators (13) 
are given in Table 1. Therefore those are the only possible differential operators satisfying 
the conditions of Theorem 1. Now we are going to show that the function t(z) associated 
to an operator in Table 1 does arise from J-function with the corresponding expression of 
17285(z) given there, hence implies the integral q-series for z(q) by Lemma 1. Associated 
to each family of the weighted hypersurfaces in Table 1, there corresponds an algebraic 
surface, denoted again by the same symbol, 

Pg: Xf +x23 + Xi - SX1x*x3 = 0, ([Xl, X2, X3], [l, S]) E P* X P’, 

x9: Xf +x; +X,2 - sxlX2X3 = 0, ([Xl, X2, x3], [I, $1) E $,,2, X P’. 

J10: xf+x;+x;- Sxlx2x3 = 0, ([Xl, x2, x3], [I, ~1) E pF,,2,3) X p’ 

withthesingularsetgivenbyO,I([O, 0, 11, [I, ~l)),{(W, l,Ol, [I, ml>,(KA 0, 11, [I, c=l)l, 
respectively. Let S (= S(Ps), s(Xg), S(Jlo)) be the corresponding minimal resolution, 
which is an elliptic surface over lip’ via the s-projection, cr : S + P’, with a-‘(~) 
as a singular fiber of type 11b for b = 3,4,6 according to S = S(Ps), S(X9), S(Jlo), 
respectively, here 1Ib = El + . . . + Eb, the union of b rational curves with the only 
intersections, Ej . Ej+l = lforlij1bandEb+l:=El.Let(~~,~2)beacanonical 
basis of Hl(a-l(s), Z) for Is( >> 0 with rl the vanishing circle near a double point of 
a-‘(~) and r2 the invariant circle near 0-I (00). The Picard-Lefschetz transformation 



(ZZ) 
‘,d =J [EX’ZX ‘IX] ‘0 = ExZxIxs - ;x f ;x+ ix = (x)“j :$x (Q) 

‘Icpg-8d 
U! saA.uw D!ldga 30 uogeluasa~da~ uoy3un3 way1 ydg~a aql aq!-maP aM uo!Pas S!ql UI 

‘( 1 z) e!~ L~!ure3-Olf .103 uopeluasaldaJ uop3un3 elaql aqi upnqo w3 au0 'AEM npp 1! UI 

'(l‘2)"~(1‘2)~Q(l‘2)~Q(l‘~)~Q(1‘~>~~(1~~)~Q~~- = M 

&(l '~)~~(~‘O)gwO)~4? + (1 '+aKl‘o);6 + (1 'O)pEQlf = Zk 

‘(1‘2)lgz = IL 

:s, X aAoqr! aql30 uo!ssaldxa uoylcwn3 elaql 
aql suyqo auo ‘[9 11 u! aeInurro3 aql pue (z 1) 30 uo!lauasaJd uo!wn3 sse.wa!aM qZno;rqL 

.(c’z’$ 3 [CX ‘ZX ‘IL] ‘0 = zx;Icza - 1 ,m - yp + ;” 

Icq uaA!% 
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and express the moduli parameter z (:= se3) by theta constants. First we note that the 
fundamental locus of the pencil (22) consists of nine elements: 

[~1,X2,~3] = [0, -1, ok], [-w, 0, -11, [-l,&, OJ for0 5 k 5 2, w = e2ni/3, 

(23) 

and each of them gives rise to a section of the elliptic surface: 

0 : s(f53) + P’ . (24) 

Let G be the group of linear transformations preserving the polynomial fS (x) for a gene- 
ric s. It is easy to see that the generators of the finite group G consist of the following 
elements: 

C(Xl, X2, X3) = (WXl, 0x2, WX3), R(X1, X2, X3) = (XI, WX2, W2X3), 

T(Xl, X2, X3) = (X2, X3, Xl), I(XltX2tX3) = (X1,X3,X2). 
(25) 

The diagonal subgroup of G is generated by C and R. By the relation R . T = C (T . R), 
the group G is isomorphic to the extended degree 3 Heisenberg group 63: 

G n SL3(C) = (C, R, T) 2 G3, G = (C, R, T) . (I) 2 G3. (26) 

The action of G on the homogeneous coordinates Xk’s is equivalent to the canonical repre- 
sentation of G3 by identifying xk with ek of (2). As a projective transformation group, G 
acts on P2 and leaves each X, invariant. Let r,, rs, 1, be the automorphisms of X, induced 
by R, T, I, respectively. Then ts and r, generates the group of order 3 translations of XS, 
and 1, is an involution of X,: 

(rs, ts) cx Z!?j 2 &/center(@), (rS, ts, I$) 2 27: . Z2 2 63/center(Q?&). (27) 

The fundamental locus (23) is invariant under is with only one fixed element [0, -1, 11, 
which induces a section of the elliptic surface (24), denoted by p : P’ + s(&). The 
translations of p by elements of (t,, rs) are the nine sections induced by (23). Denote OX,~ (1) 
the restriction of hyperplane bundle on X,. By (26) and (27) we have a G3-linearization on 
the line bundle 0x, (1) via the linear representation of G. We are going to construct this Gs- 
linearization from the universal covering space of X,. In the two-dimensional toric variety 
P2/( R), there are three toric divisors in P2/( R) defined by the zeros Of {i, 1 5 i 5 3, where 
ei are sections on P2/(R) with p*(e) = xi under the projection p from P2 onto P2/(R). 

Note that for i # j, .$i and ej are not linearly equivalent, while 63’s and cl (2c3 give rise to 
sections of the same line bundle. Denote 

ES: c: + 423 + ci - st1(2&f3 = 0 in 5’2/(R). (28) 

The restriction of the projection p defines a three-fold cover of elliptic curves, pS : X, -+ 
ES, and the automorphisms is, t, of X, induce the involution I~,O and an order 3 translation 
ts,o of SS, respectively. The restriction of ps defines a one-one correspondence between the 
fixed points 1, and l,,c, X: zz Ei’*‘, under which p(s) corresponds to an element in S~S,o, 
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denoted by p(s)0 := ps(p(s)) (= zero(tt)). One may regard ss as a one-dimensional 
torus E,,t for some r E W such that 

Is,0 : Z.$ - E, M 1 : E,J - E, 1, [zl - L-z1 

ts.0 : Es - Es w t : ET.1 - E,,l, ]zl +--+ ]z + cl for [cl E E,,I (3), (29) 

p(s)0 E E.Y *e E Er.1(2). 

By the following lemma, the above data indeed determine the algebraic form (28). 

Lemma 3. Let E be an elliptic curve with an involution 1 and an order 3 translation t. Let 
e be an element of E&ed by 1. Then: 
(i) We have the linearly equivalent relations of divisors: e + t(e) + t2(e) - 3e - 3t (e) - 

3t2(e). 
(ii) There exist non-trivial sections fi in F(lE, @t’-‘(e))) , 1 5 i 5 3 , such that the 

equality, ff + f; + f: = sfl f2 f3, holds in T(E, 0(3e)) for some s E C - (0). 

Proof Since t(t(e)) = (ltl)(e) = t2(e), we have 2e - t(e)+t2(e).Hence3e - e+t(e)+ 
t2(e). Applying t and t2 to this relation, we obtain (i). For 1 5 i 5 3, let ft be a non-trivial 
element in r(E, O(t’-l(e))). Since T(E, 0(3e)) is a three-dimensional vector space with 
( fi3]:=, as a basis, the relation fl f2 f3 = /I1 ff + 82 f; + /I3 fl holds for some complex 
numbers pi. As e, t(e) and t2(e) are three distinct elements in E, one concludes /?i # 0 for 
all i. Replacing fi by /?:‘3 fi, we obtain (ii). 0 

The above fi’s can be described by theta functions with characteristics on an elliptic 
curve iE,. i One such relation is given as follows. 

Lemma 4. In E,,I (t E HI), consider the elements pl = [it + 41, p2 = [it + i], p3 = 
[it + i]. Let 

cl=0 ; 
[I 

cc r). 62=l9 ‘; [ 1 
(z, r), c3 = l9 ‘; 

[ 1 (z, 5). 
Then cf, 62, <:, <1 &c3 are sections in f (E,, I, O(C;zl pi)) with the following identity: 

<: + c; + 6; = sb.$2[3 (30) 

with s given by 

s-1 = q5’96(0, t)6(t/3, t)6(2s/3, r) 

6(0, s)3 + q1/36(s/3, t>3 + q4/30(2r/3, t)3 . 

Proof By (6), zero(tl&) = pl + p2 + p3, and t,“, e;, <:, 616263 are functions with the 
same quasi-periodicity condition, hence sections in r(lE,,t, CL&=, pi)). Now the linear 
dependence of 6: + 42” + ez and {l.$c3 is equivalent to zeroOf + Q? + 6,“) = p1 + p2 + ~3, 
which will follow from CC,’ + #(PI) = (c: + #(p2> = (c: + &(p3) = 0. By (6) and 
(8), we have: 
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6 213 
[ 1 o ($(r + l), t) = -e2+?9 1; 

[ 1 (;(r + I>, r), 
fi 213 

[ 1 o <;(r + 1) - $5) = e*z’(r+‘)4Y(;(t + 1) + ;r, 

= e*~i(r+1)/3fi(_;(r + 1) _ fr) 

= -e *=i’38(;(r + 1) - $>, 

* 113 
[ 1 o (i(t + 1) - $r, 5) = ekii379(i(s + 1) - it) 

=e =i’3zY(-j(r + 1) + fr, 

= enii30(i(r + 1) - $r). 

Therefore we obtain relation (30), whose value at z = 0 gives the expression of s . 0 

Remark 1. By a similar argument, one can also have relation (30) by setting: 

41 = f? 
[I 

: (z, r>, 

61 = l9 
[I 
: (z. r>, 

t1=s ; 
[I 

(z, r), 

c2 = t+ 

c2 = e8W9~ :i: [ 1 (z. r>, 
63 = 29 [ 2s3 1 k r>, 
63 = e8ni/99 z$i (z, r), 

[ 1 
C3 = e-2zi/9z9 t\i (z, 5) 

[ 1 
(31) 

with the corresponding s given by 

s-1 = 6(0, r)O(1/3, rP(2/3, r) 
fl(o, r)3 + 8(1/3, r)3 + 8(2/3, r)3’ 

s-1 = 
q5/9e8”i/96(0, r)tY((r + 1)/3, r)0((2r + 2)/3, r) 

zP(0, r)3 + q1/3e-2Ki/36((r + 1)/3, r>3 + q4/3e-2Ki/38((2r + 2)/3, r)3 ’ 

s-1 = q5/9e4Ki/9tF(0, r)fi((r + 2)/3, r)z9((2r + 1)/3, r) 

tY(O, r)3 + q1/3e2Ki/36((r + 2)/3, r)3 + q4/3e2Ki/38((2r + 1)/3, r)3 ’ 

With the elliptic curve ES identified with IE,, 1 as in (29), one can write X, = C/L for an 
index 3 sublattice L of Zr + Z. With the complex number c in (29), one may assume that 
the translation on the complex plane C, z I-F z + c, induces the order 3 automorphism ts 
of X,. Then one can easily conclude 
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(X,3 h)? b-s)) 

I 
&,3? ([zl - [z + +I,, ([zl - [z + 11)) if c = *Ifr, 

(Es+1.3, ([zl - [z + f(t + 1)l). ([zl k-+ Cz + 11)) if c = ki(r + 1). 

= (bf2.3, (121 ++ lz + i(r + 2)1), (lzl - lz + 11)) if c = *i(r + 2). 

(kr.1, ([zl - [z + fl,, ([zl - [z + tl)) if c = hf. 

(32) 

Consider <;, Xi as functions on the universal covering space C of E,, and regard the funda- 
mental group of Z,Y as a subgroup of the Heisenberg group G which acts on entire functions 
of @ as in Section 2. By (32) and (2.5), cl corresponds to the A( 1, 1)-entire function on 
C, hence 41 = ZY[ i](z, t). By Lemma 3, renumbering 62 and <3 if necessary, one may 
represent [i’s by theta functions either in Lemma 4 or those in (31). By (25) and (29) one 
requires (2(-z) = $3(z), hence by (8),&(z) = O[ ‘f](z, t) or i?[ ,y3](z, t). By (25) and 

(32), &(z + 1) = O.&(Z), therefore <2(z) = rY[ ‘f]( z, r 1. Then the following conclusion 
follows from Lemma 4. 

Theorem 2. With the coordinates xi, <i ( 1 5 i 5 3) of elliptic curves X,Y, E,y in Pg-family, 
pS the morphism between them, and r,Y, ts , l.$ the automorphisms of X,Y as before, for t E W. 
define s(r) by 

s(r)-’ = 
q5'9t+(0, r)B(r/3, r)O(2r/3, r) 

29(0, r)3 + q1/3i+(r/3, r)3 + q4/39(2r/3, r)3 ’ 

Then the above data for X,, E,y have the following realization in complex tori: 

<I=0 ; [I (z, r), 62 = 6 ‘I’ [ I CL 51, 63 = 0 2/3 
[ 1 (2, 51, 

t.s : Es.3 - L.3, [zl - [z + frl, 
rs : b.3 - b.3, [zl - [Zf 11, 
15 : Es.3 - Es.33 [zl - L-z13 

and the projective representation of (r,, ts , ls) on xi ‘s is given by the canonical representa- 
tion of 6& on Ths(r). 0 

By the above expression of s(r)-‘, we now derive the formula of the variable z (:= .re3) 
in terms of q as follows. 

Theorem 3. The function z(q) for Pg-family of Table 1 is given by 

z(q) = 
q5’26(0,3t)32P(t, 3t)38(2t, 3ty 

(fi(O, 3tF + qwY(t, 3tp + q28(2t, 3tpp 
q = e*nit , 

and it has the integral q-expansion with z(q)/q tending to 1 as 9 ---+ 0. 
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Proofi By Theorem 2, for s = s(t), we have X, = [Es,3 E [Et,] and t = 45, then one 
obtains the above expression of z(q). By the infinite q-product replesentation of the theta 
function, the ratio z(q)/q tends to 1 as q --+ 0, and z(q) is an integral power series of a. 
The variable t is obtained as the ratio of two periods of the holomorphic differential of X,. 
As X, is isomorphic to X,,, t can be considered as a multi-valued function of z. Since the 
periods satisfy Eq. (13) for p = 27, a! = i, /? = 5 , t is a solution of the corresponding 
Schwarzian equation (17). It can be shown that t(z) satisfies condition (18), hence t is the 
variable in Section 3. Since z is a function of q, this implies z(q) is a power series of q with 
the integral expansion in (1). ??

Remark 2. Both the numerator and denominator in the expression of z(q) are integral 
power series of A, but not in q, even though their ratio does give an integral q-expansion 
for z. Also the surface S(P8) of (24) is the universal family of (IE, [E(3)) for l-torus 1E with 
3-torsion iE(3). 

5. Elliptic curves in Ising model 

We now start to investigate the relation between the constrained polynomials of X9- 
family and the Boltzmann weights in Ising model. Let us first recall the Jacobi elliptic 
function parametrization in Ising model. This theory has been extensively discussed. See, 
e.g. [2,3,15]. Here we adopt the formulation in chiral Potts N-state model [4,13], even 
though the prime interests of which were on hyperelliptic curves for N 2 3, however the 
parametrization works also for N = 2, i.e. the case of Ising model. 

Let W be a one-dimensional torus IE (= C/lattice), and define the automorphisms 0, a 
of W by 

8 : [z] w r-21, cr : [z] ++ [-z + zo] for some [Q] E E(2) . 

One can present W as a plane curve through the following commutative diagram: 

w 5 P’ = W/(0) 
Ln $r (33) 

W/(a) = P’ -% P’ = W/@,cr) ) 

where w, 1c/, n, n are natural projections. For some suitable coordinates of IFP’, +, n have 
the expressions: 

*(r) = 5 3T(k) = (l - k’y k’b_‘), t,A E P’ =CU(oo), 

where k’, k E @ - {0, fl) with the relation k2 + kf2 = 1. Then W is isomorphic to the 
algebraic curve: 

Wk’: t2 = (1 - k’Q(1 - k’h-‘) 
k2 , 0, A) E c2, 
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which is birationally equivalent to the plane curve: 

w* = (t2 - (1 - k’)/(l + IV))@* - (1 +k’)/(l -k’)), (t, w) E C2, (35) 

via the transformations w = (k’/k*)(;C - l/h), h = (1 /2k’)(k2(w - t*) +,V2 + 1). In terms 
of the coordinates (t, A), P, I7,0, o are defined by *(t, A) = L., n(t, A) = t, 0(t, A) = 
(-t, h), a(r. h) = (t, h-‘) and 

branched points of @: p = (oo,O), p’ = (co, oo), 4 = (0, k’), 9’ = (0, k’-‘), 

branched points of L’: bh = (&,/(l + k’)/(l - k’), I), (36) 

b; = (&/(l - k’)/(l + k’), -1) . 

With P’:t r *) as a compactification of C2 via the identification: 1 1 

[I, t, iwl = [YI, ~2, ~31 E P:I,,,2,, (37) 

Eq. (35) can be rewritten as 

wk’ ” Y, : y;1 + )‘; + y; - &J; = 0, 

[Yl? Y2? Y31 E 5$,1,2)’ (6 = 2(1 + /P)/(l - I?)). (38) 

Now the branched points of !P are given by [p, p’) = [yt = 0} and (q, q’} = (~2 = 0). 
The Boltzmann weights a, b, c, d in Ising model can be regarded as sections on wk’ for line 
bundles o(q), o(q’), o(p’), (3(p), respectively [13]. OVer a four-fold cover @k’ Of wk’, 
the above a, b, c, d are linearly equivalent and satisfy the quadratic relations which give 
rise to the equations of +kl in P3: 

a* + k/b2 = kd2 ka2 + k’c2 = d* 
k’a* + b* = kc* u kb2 + k’d* = c* 

for [a, b, c, d] E P3. 

(39) 

It is known that the variables a, b, c, d have the Jacobi elliptic function parametriza- 
tion [3,15]. Here we follow the formulation in [4,13] by expressing those variables via 
the prime form ~91 (z)(= 61 (z, t)) of the elliptic curve. By formulae 2 in [13, pp. 632-6331, 
together with (1 l), a, b, c, d have the following expression: 

CZ* : b* : c2 : d* = -e*‘%&(z + i(r - l))* : -61(z + j(--r + l))* 

: Ol(z + $(-r - l))* : e*%YI(z + :(T + 1>)2 

* A constant was missing in the expression of k’ in [ 13, p.6321. The correct formula for k’ is as follows: 

-e 
k’ = 

-ni(p,+---+p,)8[~](F, s)N 

ig 79[ f ](e, r)N 
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with 

k, = _i@2(ot r12 -e-nir/281 (l/2, T)~ 

04(0, t)2 = i 81 (r/2, t)2 ’ 
k = ~3(0, Q2 

fi44(@ t)2’ 
(40) 

Within constant factors, the variables a, b, c, d are proportional to the four Jacobi functions 
82, rY4,03, 81 with the same argument. In fact by using (4) one has the following expression: 

a2 : b2 : c2 : d2 = i92(z, r)2 : OJ(Z, r)2 : 1Y3(z, t)2 : -irYl (z, T)~. 

Then Eq. (39) is equivalent to the relations in (10) for Jacobi elliptic functions. By Section 
3 of [13], the variables h, t are related to a, b, c, d by h = d2/c2, t = ah/cd, hence we 
obtain theta function representations of h and t : 

A= 
e2n1r7Yt (z + (t + 1)/4, r)2 -it91 (z, t)2 

Ol(Z - (5 + 1)/4, s)2 = 03(z, t)2 ’ 
(41) 

t= 
61 (z + (t - 1)/4, r)81 (z + c-t + 1)/4, r) --iO2@, r)fi44(z, t) 

= 81 (z - (5 + 1)/4, rWI(z + (r + 1)/4, r) fi3(z, r)bl (z, r.) . 

Note that the Picard-Fuchs equation for the Ising family (38) is equivalent to that of X9- 
family. In fact, the equation is derived by Dwork-Griffith-Katz reduction method from 
residuum expression of the period: 

A(,, Sl, s2) = 
ss 

~1 dy2 A dy3 - ~2 dyl A dy3 + 2y3 dyl A dy2 

Yr; 
SlYf + S2Y24 + Y; - sov:y; 

where y is a small circle in p:,, ,,2) normal to the elliptic curve , ri are one-circles on the 
curve. The above integral is also expressed by 

&(l, 1,E) =; 
s 

“, 
W 

,=2%, 

r; 

where (t, w) are the coordinates of wk’ in (35). It is known that &(,u, sl, ~2) satisfies the 
following equations: 

a a a i 
so-+sl-+s2~+- 

aso as1 2 2 

a a ^ = ( ) ( 

LA-“’ &jjoo. 
‘*as, -s2F& w= as1 as2 as,2 

1 
(42) 

By the ansatz &(su, st, ~2) = (l/,&)w({), < := sls2/si = 1/c2, Eq. (42) is brought into 
the form 

By the change of coordinates, z = - &< + & = - l/ 16~~ + &, the above equation 
becomes the differential operator in table 1 for X9. 
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6. Jacobi elliptic function parametrization of X9-family 

In this section we investigate the X9-family: 

(X9) x.7: f,(X)=X;1+X24+X_~--SX,X2X3=0, [XI.QYX31 E P:,.,.J,. 

The curve X,s degenerates at s = co, 22/2p (p4 = 1) , and for s = ~&,LL, it becomes 
the union of two rational curves. The linear transformation group preserving a generic 
polynomial f,(x) is generated by C. R, C: 

C(XI, x2. x3) = (ix,, ix2. --x3). R(.x,,x~.x3) = (-x,.x2.--xj). 

~bl..~2.X3) = (X2,X1,X3). 
(43) 

The diagonal subgroup is generated by C and R, which acts on Pf, , 2j as an order 2 group . 1 
induced by R. Denote the restriction of R, C on X, by rs, 6,, : X, - X,Y. Then r( is an 
order 2 translation and 4, is an involution of X,Y with r,& = 5.\rs. The zeros of Xi’s in X, 
are given by 

zero(xt) = {[O, I, *l]), zero&) = {[l,O, *l]), zero(xj) = ([l, n,O]. 71’ = -1). 

each of which is stable under the r,-action. Via the projection p: P’f, , 2j + Pf, , 2j/( R). 

the coordmates x; ‘s of P’F,. , ,2j give rise to sections e;‘s on P:,,,,21/‘(k) with I,*(<,:) = x,. 

We have a family of elliptic curves in P:, , 2j/ (R) : . I 

Es:,: 4; + (24 + t:: - st,t2‘c3 = 0. [<I, <27 431 E P:,.,,,,/(R). 

The restriction of p defines a two-fold cover of elliptic curves: p, : X,5 -+ E,s. Let 0, be 
the involution of S,$ induced by 6,, with ps6,, = ~,~p,~, and p. p’. ~3, p4 be the elements 
in E,Y defined by zero(tt) = (p}, zero(<z) = (p’) and zero(&) = (~3, p4]. We have 

2P - 2p’. p+p’ - p3 +p4 and 6F3 <i E f(E,, CWp)), ht2, 63 E f(c”,, Wp3 + ~4)). 
The following lemma shows that qualitatively p, p’, ~3, p4 determine the equation of 

3,Y, however as we shall see it later on, much efforts are required in order to obtain the theta 
function representation of {i ‘s. 

Lemma 5. Let 0 be an involution of an elliptic curve E, and p, p’ be two elements in E 
jixed by H . Let m be the order 2 translation of E with m(p) = p’. Then: 

(i) There exist sections fl E r(E, O(p)), f2 E f (E, c?(p’)) such that the following 
diagram commutes: 

where p(x) = [f:(x), f,‘(x)1 and m&6. ~1) = [rl, Cl. 
(ii) Letp3 beanelementof EwithW(P3) = [l, i],andph := m(B(p3)). Thenp3 # p4and 

4P - 4p’ - 2~3 +2P4 - p+p’+p3+p4. Forsomes E Cand f3 E T(E, O(p3+p4)) 

withzero(f3) = p3+p4, theequality, fp+ f;+ f: = sfl f2f3, holdsin T(‘E, O(4p)). 
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ProoJ: We may assume the map, r& : iE + P’ = E/(8), sends p, p’ to [0, 11, [I, 01, 
respectively. Since m commutes with 6, the order 2 automorphism mu of 5” induced by m 

interchanges the elements [0, 11 and [ 1, 01, hence it can be described by mu([c, n]) = [n, 61. 
Then the sections ft , f2 in (i) are easily obtained _ For x, y E E, y = m(x) if and only if 
x+p’- p + y. By the definition of p3 and p4, we have the linearly equivalent relations, 
2p + p’ - P3 + WP3) + P’ - p + p3 + ~4, hence p + p’ - p3 + p4. Then the 
equivalent relations in (ii) follow immediately. By S(e(p3)) = !P(p3), we have @(p4) = 
moW(o(p3))) = mo(]l,il) = [l, -il. Therefore p3 # p4, and ff(pj) + $(pj) = 0 
for j = 3,4. Let f3 be a section in f (E, 0(p3 + ~4)) with zero(f3) = p3 + p4 and 
f:(p) + f-$(p) = 0. The sections .$ + f. + f32, ft f2f3 in r(E, 0(4p)) both vanish at 
p3, p4, p, hence they are proportional by a non-zero constant. Therefore we obtain (ii). •I 

Consider the birational map 

4 : $1.1.2) --+ P’ x Pl, [Xl 1 x27 x31 - ([xr 3 x21, [x3, x1x21) 1 

whose fundamental locus consists of three elements, defined by two of coordinates xi’s 
being zero. With the automorphism R of Ir”f, , 2j in (43) and I? of P’ x P’, 3 1 

R:P1xP1+P1xP’, ([Yl, Y21? ]Y37 Y41) - ([Yl, -Y21, ]Y3, Y41), 

we have I?@ = cpR. Hence 4 induces a birational morphism between P& 1 2j/(R) and 1 3 
P1 x P’, [ijl, (2,631 - ([t:, t,‘], [(3, ctt2]), which embeds SS into P’ x P’. With the 
coordinates of ES in P’ x P’, 

P:& --+P’, x - K,“(x), &x)1, k(x) := (&&(x)7 

n’ : Es --+ p’, 
(44) 

x - [63((x), ~162(x)l, U(x) := (~3/~1~2)(X), 

ES is birational to the curve: 

U2 - SU = -(A + l/h), (U, A) E C2 . 

By fl’cr, = 17’ and @(am) = r&(.$)-l for c E ES, the morphism l7’ is equivalent to the 
projection, ES - ES/(aS), and there is an involution 0, of ZS such that ly@, = q, &as = 
a#,. The branched data of 9 and l7’ are given by 

branched points of w: (u, A) = (is, k’), (is, I/k’), (co, 0), (00, co), 

branched points of IT’: (U.A)=(;(skJG,l), ($(SfJZ@-1) 

with k’ + l/k’ = $s2. By changing the variable of P’ from u to t via 

r = ‘g&u - ;.s> ( = gF& - (k’ + l/k’)“2]) ( (45) 

(46) 

and defining the morphism 

n : Es + P’, n(x) := t(n’(x)), 
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the branched locus I7 becomes t = +/(l - k’)/(l + k’), *,/( 1 + k’)/(l - k’). With q 
in (44) and I7 in (46), one may identify ES with the curve wk’ in (34), which is the same 
as Yt in (38). By (44), (45) and (37), the following elliptic curves are isomorphic: 

o”, “” w,t ” Y,, 161, t2, t-31 - (t, h) - [Yl> Y2. .Y31 7 (47) 

with the correspondences: 

where parameters S, k’ and E are related by is2 = k’ + l/k’ = 2tlJE-4. Note that for 
the X9-family, X, 2: X,, if and only if s4 = sf, and for the Ising family wk# 2 wk; if and 

only if k{’ = 1 / k12. Hence the variable z, 

f2 
-4 z-&+&z 

k ._ z .- s 
16(1 + k’2)2 ’ (48) 

is the moduli parameter of isomorphic classes of the elliptic curves either in X9-family, or 
in Ising family. According to the discussion in Section 5, one may identify wk, with E,, 1 
where k’, t satisfy relation (40). Using (1 l), we have 

-62(0, t)484(0, tJ4 

‘(‘) = l6(83(O, s)~ - 482(0, ~)~64(0, T)~)’ 

hence 

(49) 

S(t) = 2e3ni/4 J82to> t)4 - ‘4t07 t)4 

82(0, t)a4(0, t) ’ 

vm = 2eni14 b2(~~~~~~~ t) 

Theorem 4. With the coordinates xi, ci (1 5 i 5 3) of elliptic curves X,, E,Y in the X9- 
,family, ps the morphism between them, and rs, 5, the automorphisms of X, as before, for 
r E W, dejine s(r) by 

sCsj = 2e3ni/4 Jfi2to, s)4 - #44(O> r>4 

. 92KJ r)O44(0,r) 

Then the above data for X,, Es have the following realization in complex tori: 

xv = Lfl.2 9 E,$ = iE s.19 ps : x.7 - G 3 [zl - [ZJ. 

rs :[E Tf1.2 - ET+1,23 [zl +--+ [z+ 11. 

& :IE r+l,2 - Lfl.2, [zl++ L--z+ {(r + 1)l 

with ti ‘s given by 
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,!TI = @l (z, t), t2 = e”i/48j(z, t), 

63 = 
93(0, d2 

792(0, r)O4(07 t) 

92(z, t)04(Z, T) _ &2(09 t)4 - f+4(0* t)4 

02(0, t)84(0, t) 
01 (G s)fi3(z, t) 

and through the Heisenberg group action on entire functions, one has the projective repre- 
sentation of (rs, iiy) on Xi ‘s: 

rs : (XI, ~2, x3) ++ (-XI, x2, x3) 

6, : (xl, X2, x3) w (-e~i’4x2, -en’/4x~, eni12q). 

Proo$ According to the discussion we have before, with s = s(t) one has the identification, 
c”, ZZ E,, 1, with the rational functions 9, n in (44) and (46 ) given by 

p : L.1 - p’ = L,l/(@, where f3([z]) = [-z], 

l-l : L,l - P’ = b,l/(cr), where a([~]) = [-z + i(r + l)] 

Note that the above ~7 is identified with the automorphism a, of ZZs, which can be lifted to 
the automorphism ~5~ on X,. Write X, = C/L for some index 2 sublattice L of Zt + Z. 
The morphism pS is given by the natural projection. On the universal covering space C of 
Xs, the affine map, z +-+ -z + i (t + 1) for z E @, induces the order 2 automorphism 6, 
on Xs, hence the element r + 1 is in the lattice L. This implies X, = lEs+i,2 with r,, CS 
described in the theorem. The Jacobi elliptic function parametrization of (i’s now follows 
from relations (41) and (47), and the actions of r,, 6, on xi’s are obtained by the formulae 
in Section 2. 0 

Now the formula for z (= s-~) with s = s(t) can be derived from Theorem 4. 

Theorem 5. The function z(q) for X9-family of Table 1 is given by 

- z(q) --92(0,2t 1)4-s4(0,2t 1)4 - = 

l663(O, 2t - 1)’ - 6482(0,2t - 1)4tY4(0, 2t - 1)4 

sn:,(l +qY8 
= n,“=,<1 -q2”-‘)‘6+64qn~,(l +qy 

q = e2nit. 

As a consequence, z(q) has an integral q-expansion with z(q)/q tending to 1 as q -+ 0. 

ProojI For s = s(t) in Theorem 4, we have the identification: X, = E,+ 1.2 2 Et, I, t = 
$ (T + 1). With the theta constant expression (40) fork’, relation (48) gives rise the expression 
of z(q). The same argument as in Theorem 3 shows that t is the variable described in 
Section 3. Therefore we have completed the proof of this theorem. 0 

7. Discussion 

In this paper, we have focused on the mathematical structure of “counting” functions 
z(q), and have developed an analysis of constraints in Table 1 by means of elliptic theta 
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function representations. Now we are going to discuss another aspect, which is possibly of 
certain physical relevance. Here the explicitly work out example of X9-family has illustrated 
its close connection with Ising model in statistical mechanics, where we employ the Jacobi 
elliptic function parametrization of Ising model to the investigation of X9-potential. Relation 
(48) states the parameter z in X9-family corresponds to the temperature-like parameter k’ of 
Ising model. One interesting point for the derivation of the function z(q) is that on the one 
hand it is related to Picard-Fuschs equation of the elliptic family, while on the other side 
with the parametrization for Boltzmann weights of the statistical model, the same result is 
correctly reproduced. In this setting, the mirror symmetry of X9-family is connected to the 
Z’z-cover of elliptic curves in Ising model, which often appears in the theory. Due to the 
relative simplicity of the models, the quantities involved in our mathematical work usually 
have interpretations of physical or geometrical meaning, which allows one to compare their 
essential structures in an explicit way: 

N = 2 SUSY LG theory Two-dimensional exactly solvable model 

LG fields c, Boltzmann weights 
LG superpotential t, Yang-Baxter equation 
Moduli parameter cf Temperature-like parameter 
Maximally unipotent area t----f Low temperature region 

Though we do not know now whether other models could be related in a similar manner, 
it should be interesting to note that in the work carried out in this article, the mathemat- 
ical structures of corresponding concepts do share a common feature. The theta function 
parametrization of Ising model we used here has a direct generalization to chiral Potts 
N-state models. The naive quantitative indications presented by two physical theories, X9 
and Ising models, encourage us to seek a possible link between Calabi-Yau manifolds and 
chiral Potts models: 

N = 2 LG X9-theory = Ising model 

4 4 

Kahler manifolds with ci = 0 A chiral Potts N-state models 

The connection proposed in the above diagram is vague. Nevertheless some of the sym- 
metries presented in the study of Calabi-Yau spaces resemble those in chiral Potts iv-state 
models. So. we hope some appropriate geometric picture does exist. How to detect this 
novel phenomena should be of merit for further investigation. 
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